Modelling the Propagation of Forward and Opposed Smouldering Combustion
نویسندگان
چکیده
A computational study has been carried out to investigate smouldering ignition and propagation in polyurethane foam. The one-dimensional, transient, governing equations for smouldering combustion in a porous fuel are solved accounting for improved solid-phase chemical kinetics. Forward and opposed smouldering modes are examine and the model describes well both propagation modes. Specifically, the model predicts the reaction-front thermal and species structure, the onset of smouldering ignition, and the propagation rate. This is a signifficant step forward in smouldering combustion modelling, because unification of forward and oposed propagation modes had never been achieved before. This breakthrough is associated to the use of improved chemical kinetics obtained with a novel metodology to establish the reaction chemistry. The corresponding kinetic parameters for a reduced five step mechanisms of polyurethane foam smouldering kinetics are used. These kinetic mechanisms are then used to model one-dimensional smouldering combustion, numerically solving for the solid-phase and gas-phase conservation equations. A forced flow of oxidizer gas is considered and gravity neglected. The results from previously conducted microgravity experiments with flexible polyurethane foam are used for calibration and testing of the model predictive capabilities.
منابع مشابه
Small-Scale Forward Smouldering Experiments for Remediation of Coal Tar in Inert Media
This paper presents a series of experiments conducted to assess the potential of smouldering combustion as a novel technology for remediation of contaminated land by water-immiscible organic compounds. The results from a detailed study of the conditions under which a smouldering reaction propagates in sand embedded with coal tar are presented. The objective of the study is to provide further un...
متن کاملContinuous, self-sustaining smouldering destruction of simulated faeces
A new approach for the rapid destruction of human waste using smouldering combustion is presented. Recently, self-sustaining smouldering combustion was shown to destroy the organic component of simulated human solid waste and dog faeces resulting in the sanitization of all pathogens using a batch process (Yermán et al., 2015). Here, a continuous smouldering process is demonstrated for the first...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملPhysical modelling of caving propagation process and damage profile ahead of the cave-back
The cavability assessment of rock mass cavability and indicating the damage profile ahead of a cave-back is of great importance in the evaluation of a caving mine operation, which can influence all aspects of the mine operation. Due to the lack of access to the caved zones, our current knowledge about the damage profile in caved zones is very limited. Among the different approaches available, p...
متن کامل